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Abstract
The metastable phase equilibria of substances in the disordered, liquid
or amorphous, state are considered in T –P coordinates. Application
of the thermodynamic model of pseudo-binary solutions is illustrated by
means of calculated metastable T –P phase diagrams of water, carbon, and
semiconducting compounds, GaSb and Ga38Sb38Ge24. All calculated diagrams
include the equilibrium lines between the disordered phases terminating at
the critical points and the stability boundaries of these phases, the spinodals.
Depending on the mutual disposition of the elements of the stable and metastable
T –P diagrams, two additional lines of metastable equilibria between the
crystalline high-pressure phase and each of the metastable disordered phases
can appear. These lines terminate at the points of intersection with spinodals.
These special points are denoted as pseudo-critical points. A combined analysis
of the stable and metastable diagrams gives a reasonable interpretation of
the experimental data on the phase transformations and on the nature of
the anomalous properties of the substances in question as well as allowing
prediction of some new effects.

1. Introduction

The physics of disordered condensed matter, liquid or amorphous, is a subject of increasing
research interest at present, as is evidenced also by the contents of this Special Issue. A lot
of papers are devoted to the experimental study of the anomalous properties and the phase
transitions in liquid and amorphous substances in wide T –P ranges and to the theoretical
calculation of the structure and properties of the disordered phases using the molecular
dynamics simulation (MDS) methods and the statistical two-level models.

Below, we consider the metastable T –P phase diagrams with first-order transition lines
in the regions of the liquid and amorphous phases. The disordered state composed of clusters
with essentially different atomic structures is equivalent to multilevel systems as regards their
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analytical description. The constitution of such liquid and amorphous phases is a source of
many specific features observed over a wide T –P region. The latter include first-order phase
transitions terminating at the critical point, thermodynamic instability of the disordered phases
at the spinodals, anomalies of the properties in the vicinity of the critical point, as well as the
phenomenon of solid-state amorphization (SSA) due to high-pressure treatment. To explain the
nature of these phenomena and to quantitatively calculate the anomalies of the thermodynamic
properties of the disordered systems, it is necessary to supplement our knowledge of the stable
T –P phase diagrams with diagrams of the metastable phase equilibria in these substances. A
correlation between the metastable T –P diagrams, the anomalous properties of the disordered
phases, and the processes of SSA will be analysed on the basis of the thermodynamic model
of the pseudo-binary regular solutions.

2. The model of the pseudo-binary regular solutions

The model is based on the following statements:

(i) Both liquid and amorphous matter consists of clusters whose atomic configurations may
already be very different in the first coordination sphere.

(ii) A substance undergoing a first-order transition from a less dense phase to one of higher
density, when compressed, consists of two types of cluster. In the ground state at T = 0 K,
the phase of lower density consists only of clusters with a low coordination number
whereas the high-density phase is composed of clusters with a higher coordination number
corresponding to the higher density of the substance.

(iii) At T > 0 K, both phases consist of clusters of two kinds. These phases are considered
as solutions for the corresponding clusters, the clusters being the two components of the
solutions.

(iv) The solutions for the clusters are regular. The Gibbs potential of the solutions is of the
form

G = G1(1 − c) + G2c + Uc(1 − c) + RT [c ln c + (1 − c) ln(1 − c)] (1)

where G1 and G2 are the Gibbs potentials of ‘pure components’, c and (1−c) are their molecular
concentrations, Uc(1 − c) is the mixing energy of the system, and R[c ln c + (1 − c) ln(1 − c)]
is the configuration entropy of mixing.

Formally, expression (1) is completely analogous to that for the regular solutions of
ordinary two-component systems, but it has an important feature. Equation (1) describes the
properties of a system that is, in fact, a one-component system rather than a two-component
one. The clusters of two kinds are pseudo-components because they may transform from into
one another. Therefore, c is not an independent external parameter, but is an internal parameter
that is adjusted under variable external parameters T and P so as to minimize the G-value.
As a result, the T –P diagram has no two-phase region and includes only a line of two-phase
equilibrium. With these features taken into account, it is reasonable to define the systems
under consideration as pseudo-binary systems and both phases as pseudo-binary solutions.

It has been shown in [1] that the model of the pseudo-binary solutions is quite similar to
the statistical model proposed by Strässler and Kittel for the two-level systems [2] in which
the energy for excitation to the higher energy level, ε, is a linear function of the excitation, χ :
ε = ε0 + λχ . The present model is simply recast in terms of formal thermodynamics that are
more obvious and convenient for description of the phase diagrams. All of the coefficients in
expression (1) have a simple meaning. Concentration c corresponds to the degree of excitation,
χ , in the statistical model [2], and the mixing energy is U = λ/2.
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The model of the pseudo-binary solutions was first proposed in [3] for calculation of
the stable T –P diagram of Ce that includes the equilibrium line of two isomorphous phases
terminating at the critical point. Also calculated were the changes of the volume jump and the
transition heat along the equilibrium line, and the anomalies of the compressibility, as well
as the nature of the minimum in the melting curve, were brought to light [4]. The calculated
data were in excellent agreement with the experimental ones. At the same time, Rapoport [5]
suggested a similar concept that he called a two-liquid model in order to explain maxima in the
Rb and Cs melting curves. The expression for the Gibbs potential in this model was the same
as in [3, 4] for cerium, the only difference being that the components were clusters rather than
atoms. Aptekar [6] was the first to use the model of regular solutions of two types of cluster
to calculate the metastable T –P diagrams of germanium and silicon in the disordered (both
liquid and amorphous) state. Ponyatovsky and Pozdnyakova [7] calculated the metastable T–P
diagrams of several III–V compounds. The same model was used to calculate the metastable
T –P diagram of disordered water with a second critical point [8]. The analytic expressions
for the anomalies of the thermodynamic properties of water at atmospheric pressure were also
derived [9].

For water, experimental data on the thermodynamic properties at atmospheric pressure
and on the high-pressure phase transitions are more abundant than for other substances whose
metastable phase diagrams have been calculated within the model of regular pseudo-binary
solutions. In view of this, the applicability of the thermodynamic model is illustrated first for
the example of water, and then we consider interesting consequences deduced for some other
substances.

3. Water

The anomalous properties of water supercooled below the melting point have been the
focus of research interest for a long time. Angell et al [10–13], who developed a method
for supercooling water using emulsion media, have considerably extended the interval of
water supercooling. Using this method, the thermal dependence of the main thermodynamic
properties of water was accurately measured for temperatures as low as −42 ◦C. The thermal
behaviour of the properties is similar to that of substances in the vicinity of the second-order
phase transition or near the spinodal where a phase loses stability. There was long discussion
on two feasible scenarios: continuous or discontinuous behaviour of the thermodynamic
properties of water upon supercooling to low temperatures [14, 15].

Very important data for understanding the nature of anomalies in supercooled water have
been obtained by Mishima et al [16–18] from high-pressure study of SSA of ice. In their
pioneering work [16], they found that two different modifications of amorphous ice could
be prepared, depending on the parameters of the thermobaric treatment, i.e. high-density
amorphous ice (hda) and low-density amorphous ice (lda). The hda specific volume is ∼20 %
less than that of lda, and the lda–hda transition is a reversible first-order phase transition [18].
In the present two-level model of water, the different energy states are groups of H2O molecules
that differ in short-range order. These groups of molecules are accepted here as clusters. The
occurrence of two basic structural states of water with different types of short-range order is
supported by the experimental data on the structure [19–21] as well as by molecular dynamical
simulations [22–24].

The degree of excitation of the system, c, is defined as the proportion of H2O molecules
with the hda-like atomic configuration. The ground state, i.e. pure component 1, is attributed to
the structural state corresponding to the lda phase at atmospheric pressure and low temperatures.
The excited state, i.e. component 2, is the hda structural state in its stability region at high
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pressures and low temperatures. The concentration-dependent part of the Gibbs potential is of
the form

�G(T, P, c) = G − G1 = (�E0 − T �S0 + P �V 0)c

+ Uc(1 − c) + RT [c ln c + (1 − c) ln(1 − c)] (2)

where �E0 = E2 − E1, �S0 = S2 − S1, and �V 0 = V2 − V1.
Parameter c is determined by minimizing the Gibbs potential, G(c):

∂G

∂c

∣∣∣∣
T,P

= (�E0 − T �S0 + P �V 0) + U(1 − 2c) + RT ln
c

1 − c
= 0. (3)

The first term in parentheses in equation (3) is zero at the phase equilibrium line; therefore the
phase equilibrium temperature is expressed using equation (3) as

Teq = U

R

1 − 2c

ln 1−c
c

. (4)

Four quantities in equation (3), �E0, �S0, �V 0, and U , are accepted to be independent
of T and P throughout the T –P region that we consider; thus, they constitute a set of model
constants. To determine the Gibbs potential, it is sufficient to find the values of these four
constants. The first estimate of the values is obtained directly from the experimental data.

The experimental value of the volume jump at the lda → hda transition is equal to
−4 ± 0.2 cm3 mol−1 at T = 77 K and P = 0.55 GPa [17]. The equilibrium pressure of this
transition at T = 77 K is about 0.2 GPa [17]. We assume that the extension of the lda–hda
equilibrium line to atmospheric pressure should intersect the temperature axis within an interval
corresponding to probable extrema of the low-temperature anomalies of the thermodynamic
properties, i.e. between 225 and 228 K [10, 11, 13]. Note that this extrapolation of the lda–hda
equilibrium line brings the system into the region of the liquid state over T = Tg(P). But
there is no first-order phase transition at Tg ; therefore the lda–hda equilibrium line and the
spinodals as well as their first derivatives do not have a discontinuity at Tg. For the sake of
universality, we do not distinguish between the liquid and amorphous states in the calculations
of the phase diagrams below, and denote both states as disordered ones.

The slope of the lda–hda equilibrium line thus deduced and the volume jump give an
approximate �S0 value: 3.8 � �S0 � 5.4 J mol−1 K−1. A linear extrapolation of the
equilibrium line to T = 0 K results in a transition pressure which should satisfy the relation
P(0) = �E0/�V 0. This gives an estimated value of �E0 = 0.84–1.26 kJ mol−1. Such linear
extrapolation is not correct in the physical sense in the limit of T = 0 K, because it does not
take into account the third law of thermodynamics, but it can be used as a first approximation.
To find the U -value, we use a relation that is valid for the regular pseudo-binary solutions at
the critical point (see [9]):

Tcr = U/2R. (5)

Accepting Tcr � 228 K as the first approximation, we obtain U = 3.79 kJ mol−1.
Further fitting of the model constants to the available experimental data resulted in

the following final values: �E0 = 1.04 kJ mol−1, �S0 = 4.23 kJ mol−1 K−1, �V 0 =
−3.8 cm3 mol−1, and U = 3.83 kJ mol−1. These values were used in all further calculations.

3.1. The metastable T –P phase diagram of water

With the values of all four constants known, expression (1) for G(c) allows us to calculate the
equilibrium line between the ldd and hdd (low-density disordered and high-density disordered,
respectively) phases, the boundaries of the thermodynamic stability (the spinodals), the
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Figure 1. The metastable T –P phase diagrams of water calculated with the thermodynamic
model [8, 9] (solid curves) and with the MDS method [22–24] (dashed curves). Also labelled are
the critical points, K and K′, and the hdd–ldd equilibrium lines between the low-density and high-
density disordered phases. Circles and triangles show the experimental data on the hdd → ldd and
ldd → hdd transitions at P = constant [18], and the vertical bar is for the experimental data on the
hdd → ldd transition at P = 1 atm [25].

coordinates of the critical point, as well as the anomalies of the thermodynamic properties
near the critical point and the spinodals. Figure 1 presents the metastable T –P phase diagram
of water. The thick solid curve shows the curve of equilibrium between two disordered phases.
Its equation is

G1(T, P) = G2(T, P) or �E0 − T �S0 + P �V 0 = 0. (6)

Hence, the ldd–hdd equilibrium line in the present model is a straight line with a slope
dT/dP = �V 0/�S0 = −900 K GPa−1.

The spinodals are plotted as thin solid curves. The equation for the spinodals is

∂2G

∂c2
= −2U +

RT

c(1 − c)
. (7)

G(c) has two minima inside the region limited by the spinodals, and both phases may occur
in this region. The deeper minimum corresponds to the more stable phase; the shallow one is
for the phase of lower stability. K is the critical point with the coordinates Tcr = 230 K and
Pcr = 0.0173 GPa.

There are also plotted experimental data for the ldd → hdd and hdd → ldd transitions
from compressibility measurements [18] and neutron diffraction data for the ldd → hdd
transition observed upon heating of the crystalline high-pressure phase at P = 1 atm [25].
All experimental data are inside the T –P region limited by the spinodals. The data on the
ldd → hdd transition are close to the spinodal, though these data were not used at all for the
determination of the model constants.

3.2. Anomalies of the thermodynamic properties at atmospheric pressure

The analytical expressions describing the anomalies of the thermodynamic properties of water
as functions of T , P , c, �E0, �S0, �V 0, and U are readily obtained from the expression for
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Figure 2. Parameter c: its dependence on temperature at P = 1 atm and P = Pcr [9]. The
curves are calculated with the thermodynamic model [8, 9]; the solid points are obtained from the
structural data [20].

the Gibbs potential, equation (1). (An anomaly is defined as a deviation of some property from
the normal behaviour, as usual.) So, the anomalous parts of the thermal expansion coefficient,
α, the isothermal compressibility, γT , and the specific heat, CP , are given as, respectively [9],

�α(T ) = �V 0

V

(
∂c

∂T

)
P

(8)

�γT (T ) = �V 0

V

(
∂c

∂ P

)
T

(9)

�CP (T ) = (�E0 + P �V 0 + U − 2cU)

(
∂c

∂T

)
P

(10)

where (
∂c

∂T

)
P

= �V 0

2U − RT
c(1−c)

(11)

(
∂c

∂ P

)
T

= R ln c
1−c − �S0

2U − RT
c(1−c)

. (12)

The principal factor in each of equations (8)–(10) is represented by the c-derivative with
respect to T or P . The behaviour of parameter c in the T –P plane should therefore be
considered first.

Figure 2 shows the calculated c(T ) isobars for P = 1 atm and for P = Pcr . It is seen
that the c(T ) isobar at P = Pcr is very steep in a narrow interval of 200 K < T < 235 K.
When T → Tcr , the c-derivative tends to infinity: ∂c/∂T → ∞. In contrast, parameter c
approaches a value of 0.6 near T = 240 K and then changes negligibly on further heating. At
atmospheric pressure the c(T ) dependence has no singularities, parameter c visibly changes
up to T = 300 K, and the maximum value of ∂c/∂T is reached at T = 235 K, which is the
temperature limit of supercooling achieved in the CP (T ) measurements using the emulsion
method [11].
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Figure 3. The anomaly of the H2O specific heat at P = 1 atm. Points represent the experimental
data [13], and the solid curve is a fit with the thermodynamic model [9].

Bellissent-Funel [20] has calculated the c(T, P) parameter from the structural data at
different temperatures and pressures. The full pair correlation function of water, dL(r, T, P),
was presented as a superposition of the pair correlation functions of the low-density and high-
density phases of water. The c-values calculated in [20] are also plotted in figure 2. A fairly
good correlation between the two calculated results is obvious. Both the thermodynamic
model and the calculation based on the experimental structural data result in the same value of
parameter c near room temperature, c = 0.6. This can hardly be a mere coincidence, because
the two approaches involved are independent.

The above consideration demonstrates that the concentration of high-density clusters, c,
changes most drastically in the temperature interval of 210–250 K, just where the anomalies
of the physical properties of supercooled water are strongest. Above T = 300 K, parameter
c(T ) depends on temperature only weakly, its value being close to 0.6. The negligible thermal
dependence of parameter c results in normal thermal dependence of properties of water above
300 K. Figures 3 and 4 represent the thermal dependences of the anomalies of water calculated
from equations (8)–(12) together with the experimental data from [10–13]. The agreement
between the calculated and experimental data is quite satisfactory.

Now we compare the metastable T –P phase diagram of water plotted in figure 1 with
those obtained using the molecular dynamics simulation (MDS) method. The first successful
calculation of the metastable T –P diagram was realized by Poole et al [22]. The metastable
T –P diagram calculated by means of MDS [22] is plotted also in figure 1 (the dashed curves).
It is seen that the two T –P diagrams are topographically similar, but there is a quantitative
difference as regards the positions of the equilibrium line, the spinodals, and the coordinates of
the critical point. It is essential for the critical point, in both diagrams, to be at a positive pressure
value. This means that the anomalies of water correspond to the continuous scenario. Later,
Tanaka published a T –P diagram also calculated using MDS [26], but with the coordinates
of the critical point equal to Tcr = 240 K and Pcr = −0.1 GPa, which corresponds to a
discontinuous thermal behaviour of the properties at atmospheric pressure.

A long discussion on continuous or discontinuous scenarios was completed by
Mishima [27]. Mishima measured the melting curves of the crystalline high-pressure D2O
phases, ice III, IV, and V, in their metastability regions. To avoid transitions to the stable
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P = 0.01 GPa (solid curve) [9] as compared to the experimental points [57].
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Figure 5. A schematic plot of the melting curves of the D2O phases, ice III, IV, and V, measured
on decompression (solid curves) [27]. The dashed line shows the presumed line of hdd–ldd
equilibrium, and K is the critical point.

crystalline phases, the emulsion method was used. The melting points were fixed in
decompression runs. Figure 5 presents a schematic plot of the experimental melting curves of
ice III, IV, and V. A sharp break of the slope is observed in the melting curves for ice IV and
V, whereas that of ice III is continuous and smooth to atmospheric pressure, demonstrating
a distinctly supercritical behaviour. Mishima related the break points in the ice IV and V
melting curves to the crossing of the phase equilibrium line between the low-density liquid
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(ldl) and high-density liquid (hdl). So, these data give the position of the ldl–hdl equilibrium
line and rough coordinates of the critical point that should be between the ice III and V
melting curves. The estimated coordinates of the critical point are Tcr = 230 ± 5 K and
Pcr = 500 ± 200 atm [27], which is in accord with the values calculated within the present
thermodynamic model.

A general conclusion from the theoretical and experimental data discussed above is that the
anomalous properties of supercooled water are a consequence of the occurrence of the second
critical point at a positive pressure, P > 1 atm. Hence, these are supercritical anomalies.

4. Silicon, germanium and AIII–BV compounds (GaSb, GaAs, and InSb)

The validity of the model of the pseudo-binary solutions for the analysis of the metastable T –P
diagrams of semiconductors with the tetragonal structure is demonstrated by the experimental
data on the behaviour of melts [28] and the SSA of these substances [29, 30], and supported by
the theoretical interpretation of the structure of disordered Ge and Si [31, 32]. The discussion
below concerns the thermodynamic aspects of the T –P diagrams including feasible liquid–
liquid and amorphous–amorphous phase transitions.

Regel and Glazov [28] observed an anomalous increase of the viscosity and the electric
resistivity of the liquid semiconducting elements Si and Ge and several AIII–BV compounds
when temperature approached the crystallization point. They explained the anomalies
discovered in terms of the formation of tetrahedrally coordinated clusters whose concentration
in the metallic melt increased with lowering temperature, and determined the thermal
dependence of their concentration. These data gave a good experimental basis for calculation of
the metastable T –P phase diagrams of the supercooled disordered states for Ge and Si [6] and
for the AIII–BV compounds [7] using the model of the pseudo-binary solutions. All metastable
diagrams calculated for these semiconducting substances include a first-order transition line
that terminates at the critical point in the range of negative pressures. The speculation on these
substances is much simplified compared to that for water because:

(i) All of them have the only crystalline modification at atmospheric pressure, i.e. the
semiconducting phase with tetrahedral coordination transforms to the more closely packed
metallic phase under high pressure. The assumption of only two types of cluster in
the melt coordinated according to these two polymorphous modifications seems rather
uncontroversial therefore.

(ii) The stable T –P phase diagrams are studied in considerable detail.
(iii) The structure and the electric properties of the amorphous semiconducting films prepared

using vapour deposition are known.
(iv) The SSA of the GaSb high-pressure phase, GaSb II, as well as the structure, the

thermal stability, and the electric properties of the amorphous samples have been studied
experimentally in detail [29, 30, 33].

In contrast to water, however, the melts of these semiconductors cannot be supercooled
well below the melting point. Experimental data on the properties of supercooled metallic
melts are therefore not available, which makes determination of the model constants, and
hence the calculated metastable T –P diagrams, less reliable. The T –P diagrams are therefore
calculated on a semiquantitative level. Nevertheless, the analysis of the diagrams obtained
elucidates some features of the T –P behaviour of the disordered phases of the two-level
systems. This is illustrated below for GaSb as a representative of the tetrahedrally coordinated
substances.
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Figure 6. The stable and metastable T –P phase diagrams of GaSb. Part (a) shows: the
experimental lines of the stable phase equilibria (bold solid curves); the calculated line of metastable
equilibrium between the metallic disordered and semiconducting disordered phases (thin solid
curve); the calculated spinodals (dash–dotted curve); and the critical point, K [7]. Part (b) presents
a schematic explanation of feasible equilibria between the stable and metastable phases: k1tm is the
extrapolation of the phase II melting curve limited by the pseudo-critical point k1; the metastable
II–SD phase equilibrium line, ntk2, is limited by pseudo-critical point k2; and t is the triple point
of the metastable equilibrium, SD–MD–II.

The stable and metastable GaSb phase diagrams are presented in figure 6(a). The
metastable equilibria in disordered GaSb are calculated using equation (1) with the following
model constants: �E0 = 21 kJ mol−1, �S0 = 28.4 kJ mol−1 K−1, �V 0 = −3.06 cm3 mol−1,
and U = 16.8 kJ mol−1 [7].

The analysis of the experimental data on SSA raises several questions. There are many
works where pressure-induced SSA of crystals is treated as a result of crossing of the melting
curve of the given crystalline phase extrapolated to the metastability region. This idea is
called the cold-melting hypothesis. If this hypothesis is followed, quenched phase GaSb II
should transform to the metallic disordered phase when heated above the point of intersection
of its melting curve with the T -axis. Under the assumption of cold melting, this transition
appears to be endothermic, like in other cases of melting. Upon further heating, the metallic
glass would transform to another phase with a lower Gibbs potential: either to the stable
semiconducting crystalline phase I or to the metastable semiconducting disordered phase.
Quenching from the melt at a high rate also would result in metallic glass. Metallic glass,
however, has never been obtained using the various techniques of high-rate quenching from
the metallic melt. When metastable crystalline phase II is heated at atmospheric pressure,
it undergoes a transition directly to the semiconducting amorphous phase with tetrahedral
coordination. Neither amorphous metallic phase was observed even as an intermediate stage
of SSA. The GaSb II → amorphous phase transition is concomitant with heat evolution rather
than absorption as in the case of melting. What is the nature of these phenomena, contradicting
the cold-melting hypothesis? The metastable T –P diagram calculated on the basis of the
thermodynamic model explains this behaviour of GaSb.

Consider the GaSb phase diagram presented in figure 6(a). When quenched at P =
1 atm, the melt has to cross the line of the MD → SD (metallic disordered–semiconducting
disordered) phase equilibrium. The MD → SD transition that would occur at a temperature
no less than the boundary of the stability region for the MD phase (lower spinodal) would
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result in considerable heat evolution, and, hence, a delay in cooling leading to crystallization.
This is why the MD state cannot be retained in high-rate quenching of the GaSb melts. The
MD state is thermodynamically unstable at atmospheric pressure and temperatures below the
MD spinodal. SSA of the quenched GaSb II phase on heating occurs below the MD spinodal.
This is why the crystal II → SD transition takes place.

Now we discuss whether there is a correlation between the extrapolation of the melting
curve to P = 1 atm and amorphization of the high-pressure phase on heating—in other words,
whether the hypothesis of cold melting is applicable for explaining SSA of GaSb. For this
purpose, all possible phase equilibria due to extrapolation of the phase II melting curve to the
metastable region are considered in figure 6(b). Only one metastable equilibrium, II–MD, is
possible in the interval between the ‘liq–I–II’ triple point and point m. Both metastable phases,
SD and MD, are feasible in interval mt of the extended melting curve, but G M D < GSD here—
that is, the MD phase stays more stable than the SD one. The relation of the Gibbs potential
is opposite in the interval tk1, GSD < G M D , and the SD phase becomes more stable than the
MD one. Finally, point k1 is a permissible limit for extrapolation of the II → MD melting
curve. The Gibbs potential has only one minimum in the region to the left of point k1. This
minimum corresponds to the SD phase whereas MD is thermodynamically totally unstable and
therefore is no longer a phase. Because the melting curve is a line of either stable or metastable
equilibrium between two phases, the melting curve in question terminates at the point where
one of the phases stops existing. Therefore, further extrapolation of the melting curve has no
physical sense. There is a clear-cut distinction between point k1 and classical critical points
ending the lines of the liquid–vapour, ‘am I–am II’, or fcc Ce I–fcc Ce II isomorphous phase
equilibria. Approaching a classical critical point, two phases become closer in their properties,
and both become unstable at the point. In contrast, k1 is a point where only one of the phases,
the disordered one, becomes unstable, and the difference between the phases remains intact.
This special point was therefore defined in [34] as the pseudo-critical point.

This example shows that there are some substances with phase diagrams shaped similarly
to the T –P diagram of water, but extrapolation of the melting curves of their high-pressure
phases to low temperatures and zero pressure is not possible. The hypothesis of cold melting
is therefore not universal and applicable to all substances with no exceptions.

There is another interesting feature of the GaSb metastable diagram. Point t is the
intersection point of two equilibrium lines, the MD–GaSb–II melting curve and the MD–
SD equilibrium line between two disordered phases. According to the phase rule, t should be
the triple point of the MD–SD–II equilibrium, and the third line, the II–SD equilibrium line,
should also pass through this point. This line is an analogue of the MD–II melting curve, the
only difference being that the crystalline metallic phase crossing this line undergoes a transition
to the semiconducting disordered phase, SD, liquid above Tg and amorphous below Tg. This
line is shown in figure 6(b) as ntk2. Its slope with respect to the pressure axis depends on
the value and the sign of the entropy jump, the latter being larger, less than, or equal to zero.
Hence, the line of the II–SD equilibrium, ntk2, may have either positive or negative slope, or
it can be vertical. Intersection of the metastable II–SD equilibrium line with the boundary of
thermodynamic stability of the SD phase (top spinodal) is a new pseudo-critical point, k2. The
II–SD equilibrium line terminates at the point k2. So, the triple point t is the intersection point
of three metastable equilibrium lines, one of them terminating at a classical critical point and
the other two terminating at the pseudo-critical points.

To conclude, the analysis of the superposed stable and metastable diagrams gives a number
of topological elements that are absent in each diagram separately. At first sight, the topological
features of the metastable T –P phase diagrams as well as the pseudo-critical points appear
to be only of academic interest and to have no direct relation to the experimental data on the
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Figure 7. The stable and metastable T –P phase diagrams of Ga38Sb38Ge24 [35, 36]. Shown
are the lines of the stable equilibria (bold solid curves), the extrapolation of the phase II melting
curve (bold dashed curve), the calculated line of the metastable equilibrium between the metallic and
semiconducting disordered phases (thin solid curve), the calculated spinodals (dash–dotted curves).
Thin solid lines below 150 ◦C and their extensions (dotted) to higher temperatures represent the
kinetic curves of the II → SD and SD → II phase transitions, and the thin dashed line is the
metastable II–SD phase equilibrium line. Pseudo-critical points are designated as k1 and k2, and
t is the triple point of the SD–MD–II metastable equilibrium. The experimental points of the
II → SD and SD → II phase transitions are plotted as open and solid triangles.

phase transitions in the systems under consideration. There are, however, several examples
where the thermodynamic concept of the metastable T –P phase diagrams developed here is
useful for analysis of the experimental data obtained in the stability regions of liquid as well
as amorphous phases.

(1) Antonov et al [35, 36] observed reversible SSA of the metallic phase resulting in the
semiconducting amorphous phase (II–SD) on compression and decompression of the
Ga38Sb38Ge24 alloy (see figure 7). The transformation has a large hysteresis increasing
with lowering temperature. The calculated line of the II–SD metastable equilibrium is
between the kinetic curve of the direct and reverse transitions, as it should be. Therefore,
the II–SD equilibrium line in figure 7 corresponds to line ntk2 in figure 6(b). Note that
the kinetic curve of the transformation oversteps the graphic extrapolation of the MD–II
melting curve around T = 40 ◦C.

(2) The other example is given by Mishima [27] in the above-mentioned measurements of the
metastable melting curves of the D2O crystalline phases, ice IV and V (see figure 5). The
melting curves of ice IV and ice V have distinct breaks of slope. The low-temperature
parts of the ice IV and V melting curves are close to vertical. The top part of each curve
corresponds to the crystal hdl equilibrium, and the low-temperature part corresponds to the
crystal ldl equilibrium. The low-temperature parts are analogues of line ntk2 in figure 6(b)
and have different slopes because different crystalline phases, IV and V, are in equilibrium
with the same liquid phase.

(3) In both cases above, the curves for the transition between the crystalline high-
pressure phase and the low-pressure disordered phase are analogous from the formal
thermodynamic point of view within the present model. Note, however, an important
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difference between the experimental conditions in the measurements on D2O and on the
Ga–Sb–Ge alloy. The difference is that the experiments on D2O [27] were carried out
at T > 200 K, i.e. above the glass transition temperature, Tg (Tg ≈ 150 K for water),
whereas the Ga38Sb38Ge24 alloy in [35, 36] was studied below Tg. This resulted in a crucial
kinetic difference of the disordering process. Disordering of the high-pressureD2O phases
takes place immediately upon crossing each equilibrium line, IV ldl or V ldl, as at normal
melting of the stable phase. In contrast, amorphization of the Ga38Sb38Ge24 alloy is
characterized by a hysteresis increasing at lower temperatures, as at the crystal–crystal
phase transitions. This example shows also that a correlation between the glass transition
temperature and the metastable phase diagram is also very important for interpretation of
the available experimental data on the metastable transitions.

(4) The nature of the exothermal heat effect due to transition of the crystalline phases quenched
under pressure to the semiconducting amorphous state observed in the Ga–Sb and Ga–
Sb–Ge systems at P = 1 atm [29, 35] is now cleared up. Amorphization of these
substances takes place at a point separated from the II–SD equilibrium curve by the value
of Peq . The heat effect of SSA at atmospheric pressure therefore consists of two terms:
�H = �Heq + Peq �V where �Heq < 0. But the absolute value of �Heq is less than
that of the Peq �V term. The sign of the heat effect is therefore determined by the Peq �V
term corresponding to the exothermal effect. For example, Peq �V ≈ +7.4 kJ mol−1 for
GaSb, and the experimental heat effect due to amorphization is �H = +3.5 kJ mol−1 [29];
hence, �Heq ≈ −3.9 kJ mol−1 at equilibrium pressure.

5. Carbon

Carbon is another interesting and very important substance for which calculation of the
metastable phase diagram was attempted, involving a feasible phase transition in the liquid
state. Figure 8 shows the melting curves of carbon presented in [37–39]. There are great
differences, qualitative and quantitative, among the reported melting curves. Line 1 is a curve
with a flat maximum whereas lines 2 and 3 exhibit a distinct break of slope. The pressure values
corresponding to the maximum and the breaks of slope are approximately the same, 5–6 GPa,
but the melting temperatures differ by about 400 K both at maximum and on extrapolation to
atmospheric pressure. Curve 2 is plotted according to the latest experimental data, and Bundy
et al [37] considered it to be the most reliable. Later research, however, resulted in a shift of
the graphite–liquid–vapour triple point by 1000 K, from 4000 to 5000 K [37, 40]. On the other
hand, melting curves 2 and 3 extrapolated to P = 1 atm give ≈4600 K rather than 5000 K.
This comparison shows that the actual shape of the melting curve has not become clear so far.
The discrepancy in the data is caused by the great difficulty of experimental determination of
the melting curve of so refractory a material as carbon.

The shapes of the melting curves in figure 8 as well as the available experimental and
theoretical data on carbon [38, 39, 41, 42] suggest that liquid and amorphous carbon should
undergo a transition from the graphite-like phase (coordination n = 3) to the diamond-like
amorphous phase (coordination n = 4) under high pressure. The presumed metastable diagram
for the disordered phases—in particular, the position of its critical point with respect to the
stable T –P diagram—is strongly correlated with the shape of the stable melting curve. A flat
maximum is indicative of the position of the critical point below the melting curve, whereas
the broken curve suggests that the critical point is above the melting curve. So, previous
calculations of the metastable diagrams resulted in different conclusions.
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Figure 8. The high-temperature part of the stable T –P phase diagram of carbon. Plotted are the
experimental melting curves from [37] (curve 1), from [39] (curve 2), and from [38] (curve 3), and
the ‘liq I–liq II’ equilibrium line (curve 4) terminating at critical point K [38].

Korsunskaya et al [43] used the melting curve with a flat maximum suggested by Bundy
in 1963 [44] in their calculation within the model of pseudo-binary solutions. They obtained a
vertical line of ‘am I–am II’ equilibrium terminating at the critical point with the coordinates
Tcr = 3770 K and Pcr = 6.5 GPa. Van Thiel and Ree [38] analysed the experimental and
theoretical data on the properties of graphite, diamond, and the carbon melt available in 1993
and calculated a part of the T –P diagram within the model of two liquids. The calculated
‘liq I–liq II’ equilibrium line is presented in figure 8 as curve 4 with critical point K. The
expression for the Gibbs potential corresponds to equation (1) for regular solutions, but for the
mixing energy represented in the form

As(T, P, c) = RT

[
AS,0

1 + (P/P0)3/2

]
c(1 − c) (13)

where AS,0 and P0 are constants. The metastable equilibrium line obtained by van Thiel and
Ree is, to a first approximation, a straight line between the graphite–diamond–liquid triple
point at Ttr = 5135 K and Ptr = 5.61 GPa and the critical point at Tcr = 5520 K and
Pcr = 7.05 GPa. The slope of the ‘liq I–liq II’ equilibrium line is dT/dP = 270 K GPa−1.

The data calculated in [38] involve two ambiguities. There was no attempt to extend
the ‘liq I–liq II’ equilibrium line to the region of the metastable equilibrium between two
disordered phases below the triple point. Such extrapolation of the calculated equilibrium line
to P = 1 atm gives the metastable equilibrium temperature of T ≈ 3700 K. That is, the
calculated data suggest that the diamond glass and the diamond liquid at atmospheric pressure
are thermodynamically more stable than the graphite-like phases up to very high temperatures,
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which contradicts the experimental data. It is well known that ordinary carbon glass produced
at atmospheric pressure has a graphite-like atomic structure that stays stable on heating to high
temperatures. Further, the mixing energy in equation (13) is a linear function of temperature
(unless equation (13) is misprinted in [38]). This means that the mixing energy tends to
zero when T → 0, and the regular solution becomes an ideal solution with complete mutual
solubility of the pseudo-components. This is extremely unusual. Usually, mutual solubility of
the components in liquid and solid solutions decreases with lowered temperature and tends to
zero when T → 0 due to the decreasing negative contribution from the mixing entropy to the
Gibbs potential. It is also unfortunate that van Thiel and Ree have not plotted the spinodals in
their T –P diagram, because the positions of the stability boundaries of the disordered phases
are important for evaluation of the T –P conditions in the experimental study of the phase
transitions between the amorphous phases. For these reasons, the phase diagram reported
in [38] does not seem very reliable.

So, the experimental data available at present are not sufficient for an accurate calculation
of the metastable diagram of carbon. In spite of their uncertainty, below we attempt to compile
the available experimental data and to use the thermodynamic model in order to suggest a
realistic version of the metastable diagram. The latest data on the coordinates of the graphite–
liquid–vapour triple point [40] indicate that the melting curve should be extrapolated to about
5000 K at P = 1 atm. Therefore, we accept curve 3 as the most reliable and shift it upwards by
400 K. Now the point of the break in curve 3 is between the maximum in curve 1 and the break
point in curve 2, differing from them by about 50 K at the same pressure of 5.5 GPa. The ‘liq I–
liq II’ equilibrium line (graphite-like liquid–diamond-like liquid) should pass through the break
point at a much larger slope than line 4 in figure 8 and terminate at the critical point. A negative
slope of this line is unlikely—for instance, from comparison with the equilibrium line between
the graphite and diamond crystalline phases. Suppose the extreme case, a vertical ‘liq I–liq II’
line as in [43], and Tcr = 5500 K, which is close to the value presented in [38]. Depending
on the preparation technique, the density of graphite-like amorphous carbon (carbon glass)
ranges between 1.5 and 2.0 g cm−3, and that of diamond-like amorphous carbon (diamond
glass) is between 2.7 and 3.4 g cm−3. The diamond-like amorphous carbon with the density
of ρ = 2.99 g cm−3 was obtained from fullerene using shock-wave compression and the
rapid-quenching technique [45, 46]. Diamond-like amorphous carbon with the density of 2.7–
3.42 g cm−3 was also obtained by detonation of a mixture of an explosive with graphite [47].
We accept some average value for the model constant, �V 0 = −2.4 cm3 mol−1. It is essential
that this value affects only the positions of the spinodals in the T –P diagram, because the
equilibrium line was accepted as being vertical. Other model constants are determined as
U = 2RTcr = 45.9 kJ mol−1, �E0 = P �V 0 = 12.9 kJ mol−1, and �S0 = 0 kJ mol−1 K−1.
The metastable T –P diagram of carbon calculated using the model of pseudo-binary solutions
is plotted in figure 9 together with the melting curve and the graphite–diamond equilibrium
line.

The mutual disposition of the lines of stable and metastable equilibria in carbon suggests
some assumptions on feasible transformations in the graphite-like disordered phase subjected
to thermobaric treatment under various conditions. In the region of the thermodynamic stability
of graphite and T > Tg, carbon glass should rapidly crystallize to graphite. In the stability
region of diamond, the following transformations are possible:

(1) Carbon glass should crystallize to diamond at T > Tg. According to the empirical
Kauzmann rule, Tg ≈ 2

3 Tm where Tm is the melting temperature. Following this rule,
Tg ≈ 3000 K for carbon. Note that the transition of the carbon glass to the labile state
with high diffusion mobility of the atoms, as if it were ‘melting’, takes place at about
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Figure 9. The presumed stable and metastable T –P phase diagram of carbon. The equilibrium
graphite–diamond curve [37] and the melting curve are plotted as bold solid curves, the thin solid
curve represents the metastable equilibrium between the graphite-like and diamond-like disordered
phases (‘gld’ and ‘dld’, respectively), and the dashed curves are for the spinodals. The dotted line
indicates the probable value of the glass transition temperature, Tg .

2000 K below the melting temperature of graphite. This facilitates synthesis of diamond
from carbon glass, compared to graphite as the initial state, in hatched region A in figure 9.

(2) When T < Tg , carbon glass is expected to transform to different products. As temperature
is lowered, the transformation product may wander from the equilibrium state, and
formation of fine-grained diamond, nanocrystalline diamond, a mixture of nanocrystalline
diamond and diamond-like amorphous glass, or 100% diamond-like amorphous product
is anticipated. The assumed region of these transformations is shown as hatched region
B in figure 9.

There is, however, a low-temperature limit below which the time of equilibration to the
metastable state—that is, the time of relaxation to the corresponding local minimum of G—
exceeds the characteristic experimental time. The thermodynamic models are no longer
applicable in this T –P region (below hatched region B in figure 9). But carbon glass has
low density; therefore it can become completely unstable on further compression. In this
case, carbon glass is expected to transform to some intermediate disordered or crystalline
states. Goncharov [48] observed an effect of this kind for nanocrystalline graphite and lda
carbon compressed to 35 GPa at ambient temperature. The samples became transparent and
disordered, though the Raman spectrum showed no hint of the diamond Raman band.

There have been many experiments on carbon in the form of graphite or fullerenes and
subjected to high-pressure treatment at elevated temperatures (see [37, 45–47, 49]). It is
surprising, however, that the transitions between graphite-like glass and diamond-like glass
have been studied least. The experimental conditions corresponding to hatched region B are
accessible to contemporary multi-anvil apparatuses. The diamond-like amorphous state and
its composites with nanocrystalline diamond can be obtained in the form of bulk samples.
These bulk samples are expected to have useful mechanical properties, because they should
be superhard and should have no cleavage planes.
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6. Conclusions

It follows from the above consideration that the behaviour of a substance in the T –P plane
is strongly dependent on the constitution of its melt. If the melt of the substance consists
of two or more kinds of cluster markedly different in structure, internal energy, and specific
volume, the substance is expected to show anomalous thermal and pressure dependences of its
properties. Some features of such two-level systems represented by substances most studied
currently are analysed here on the basis of a simple thermodynamic model of pseudo-binary
regular solutions.

There are certainly many substances for which this model would be a rough approximation,
inadequate for quantitative calculation of the metastable diagram and the anomalous properties
of the liquid and amorphous phases. In some cases, taking into account more than two
cluster types, a thermal and pressure dependence of the model constants, or some other model
modification will be necessary for an accurate fit to the data. Further improvement can be
achieved by the use of more sophisticated thermodynamic models of the multicomponent
irregular solutions. Such models have already been successful when applied to multicomponent
systems in metallurgy and mineralogy.

We can state, however, that the sophisticated models will retain the main features of
the multilevel systems illustrated here using the examples of simple substances considered
as two-level systems. That is, the metastable phase diagrams should include the first-
order transition lines, the critical (pseudo-critical) points, and the resulting anomalies of the
properties. The changes are expected at the quantitative level only—in particular, two or
more phase equilibrium lines with critical points may occur in the T –P diagrams of the
multilevel systems representing the disordered state. Such an example has already been
reported, e.g., for amorphous SiO2 where two phase transitions, quartz-like → coesite-like and
coesite-like → stishovite-like, were concluded to be occurring on the basis of the experimental
data [50]. Two first-order transition lines above the melting curve are assumed for liquid S,
Te, and P [51–54].

It is more crucial that a correct interpretation of the experimental data and prediction of
unexplored phenomena in the multilevel systems requires knowledge of the superposition of
the lines of stable and metastable equilibria. So, it is necessary to know both the stable and the
metastable T –P diagrams. There are two ways to calculate the metastable T–P diagrams of the
disordered substances considered so far: the MDS technique and thermodynamic modelling.
There is no doubt that MDS is a more powerful method because it provides one with information
both on the atomic structure and on the macroscopic properties of the subject of study. But the
thermodynamic approach has its own advantages, such as clarity, simplicity, and deducibility
of the analytic expressions describing all elements of the phase diagram and the anomalies of
the thermodynamic properties in the vicinity of the critical point and the spinodals.

The number of two-level and multilevel systems is very large. These are numerous
substances for which SSA was observed due to thermobaric treatment [55]. There are many
binary systems with distinctly anomalous concentration dependences of the thermodynamic
properties in the melt at atmospheric pressure. For the latter, Sommer proposed a
thermodynamic model of solutions with so-called associates [56]. Associates in the Sommer
model are just the same as clusters of a fixed stoichiometric composition and structure in the
environment of the metallic melt. The model itself is based on chemical thermodynamics
and uses the mass action law commonly applied in the description of chemical reactions.
Substances of both named groups are representatives of multilevel systems.

In spite of a long previous history, activity in plotting the metastable T –P phase diagrams
of disordered substances is still at its initial stage. The most promising subjects for this activity
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at present are elemental S, Se, Te, P, and I as well as the SiO2 and GeO2 compounds, for which
some experimental and theoretical data are already available [51–54].
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